Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario. To address these issues, we propose a novel Reliable Causal chain reasoning framework~(ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks~(SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译
文档级事件提取中有两个主要挑战:1)参数实体分散在不同的句子中,2)事件触发器通常不可用。为了解决这些挑战,最先前的研究主要关注以自回归方式建立参数链,这在培训和推论方面效率低下。与以前的研究相比,我们提出了一种快速轻量级的模型,名为PTPCG。我们设计非自动评级解码算法,以执行修剪的完整图表的事件参数组合提取,这在自动选择的伪触发器的引导下构造。与以前的系统相比,我们的系统实现了资源消耗较低的竞争结果,只需要3.6%的GPU时间(PFS-Days),推断速度快8.5倍。此外,我们的方法显示了具有(或没有)触发器的数据集的卓越兼容性,并且伪触发器可以是注释触发器的补充剂,以进一步改进。
translated by 谷歌翻译
特定于语言的预训练模型已被证明比单语说在单语法评估设置中更准确,阿拉伯语也不例外。但是,我们发现先前发布的阿拉伯伯特模型显着培训。在这本技术报告中,我们展示了Jaber,Junior Arabic Bert,我们的预用语言模型原型专用于阿拉伯语。我们进行实证研究,以系统地评估模型在各种现有阿拉伯语NLU任务中的性能。实验结果表明,Jaber实现了Alue的最先进的表演,这是阿拉伯语了解评估的新基准,以及成熟的内部基准
translated by 谷歌翻译
作为谈论脸生成的关键组成部分,唇部运动产生决定了所产生的谈话脸视频的自然度和相干性。前文学主要侧重于语音到唇部生成,而文本到唇(T2L)生成缺乏缺乏。 T2L是一个具有挑战性的任务,现有的端到端工作取决于注意机制和自回归(AR)解码方式。然而,AR解码方式产生在先前生成的帧上的当前唇框,其固有地阻碍推广速度,并且对由于误差传播引起的产生唇框的质量有不利影响。这鼓励了并行T2L代的研究。在这项工作中,我们提出了一种用于快速和高保真文本到唇部生成(Paralip)的平行解码模型。具体地,我们预测编码语言特征的持续时间和模型在编码的语言特征上调节的目标唇框,其持续时间以非自动增加方式。此外,我们纳入了结构相似性指数损失和对抗性学习,以提高产生的唇框的感知质量,并减轻模糊预测问题。在网格和TCD-TIMIT数据集上进行的广泛实验证明了所提出的方法的优越性。视频样本可通过\ URL {https://paralip.github.io/}获得。
translated by 谷歌翻译
Physics-Informed Neural Networks (PINNs) have recently been proposed to solve scientific and engineering problems, where physical laws are introduced into neural networks as prior knowledge. With the embedded physical laws, PINNs enable the estimation of critical parameters, which are unobservable via physical tools, through observable variables. For example, Power Electronic Converters (PECs) are essential building blocks for the green energy transition. PINNs have been applied to estimate the capacitance, which is unobservable during PEC operations, using current and voltage, which can be observed easily during operations. The estimated capacitance facilitates self-diagnostics of PECs. Existing PINNs are often manually designed, which is time-consuming and may lead to suboptimal performance due to a large number of design choices for neural network architectures and hyperparameters. In addition, PINNs are often deployed on different physical devices, e.g., PECs, with limited and varying resources. Therefore, it requires designing different PINN models under different resource constraints, making it an even more challenging task for manual design. To contend with the challenges, we propose Automated Physics-Informed Neural Networks (AutoPINN), a framework that enables the automated design of PINNs by combining AutoML and PINNs. Specifically, we first tailor a search space that allows finding high-accuracy PINNs for PEC internal parameter estimation. We then propose a resource-aware search strategy to explore the search space to find the best PINN model under different resource constraints. We experimentally demonstrate that AutoPINN is able to find more accurate PINN models than human-designed, state-of-the-art PINN models using fewer resources.
translated by 谷歌翻译
Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has a narrow Field-of-View, thus leading to limited information compared with the omni-directional LiDAR data. To overcome this limitation, we focus on correlating the information of 360 equirectangular images to point clouds, proposing an end-to-end learnable network to conduct cross-modal visual localization by establishing similarity in high-dimensional feature space. Inspired by the attention mechanism, we optimize the network to capture the salient feature for comparing images and point clouds. We construct several sequences containing 360 equirectangular images and corresponding point clouds based on the KITTI-360 dataset and conduct extensive experiments. The results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
Rising usage of deep neural networks to perform decision making in critical applications like medical diagnosis and financial analysis have raised concerns regarding their reliability and trustworthiness. As automated systems become more mainstream, it is important their decisions be transparent, reliable and understandable by humans for better trust and confidence. To this effect, concept-based models such as Concept Bottleneck Models (CBMs) and Self-Explaining Neural Networks (SENN) have been proposed which constrain the latent space of a model to represent high level concepts easily understood by domain experts in the field. Although concept-based models promise a good approach to both increasing explainability and reliability, it is yet to be shown if they demonstrate robustness and output consistent concepts under systematic perturbations to their inputs. To better understand performance of concept-based models on curated malicious samples, in this paper, we aim to study their robustness to adversarial perturbations, which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool a well-learned concept-based model. Specifically, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models. Subsequently, we propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks. Extensive experiments on one synthetic and two real-world datasets demonstrate the effectiveness of the proposed attacks and the defense approach.
translated by 谷歌翻译
我们引入了基于高斯工艺回归和边缘化图内核(GPR-MGK)的探索性主动学习(AL)算法,以最低成本探索化学空间。使用高通量分子动力学模拟生成数据和图神经网络(GNN)以预测,我们为热力学性质预测构建了一个主动学习分子模拟框架。在特定的靶向251,728个烷烃分子中,由4至19个碳原子及其液体物理特性组成:密度,热能和汽化焓,我们使用AL算法选择最有用的分子来代表化学空间。计算和实验测试集的验证表明,只有313个(占总数的0.124 \%)分子足以训练用于计算测试集的$ \ rm r^2> 0.99 $的精确GNN模型和$ \ rm rm r^2>>实验测试集0.94 $。我们重点介绍了提出的AL算法的两个优点:与高通量数据生成和可靠的不确定性量化的兼容性。
translated by 谷歌翻译
从搜索效率中受益,可区分的神经体系结构搜索(NAS)已发展为自动设计竞争性深神经网络(DNNS)的最主要替代品。我们注意到,必须在现实世界中严格的性能限制下执行DNN,例如,自动驾驶汽车的运行时间延迟。但是,要获得符合给定性能限制的体系结构,先前的硬件可区分的NAS方法必须重复多次搜索运行,以通过反复试验和错误手动调整超参数,因此总设计成本会成比例地增加。为了解决这个问题,我们引入了一个轻巧的硬件可区分的NAS框架,称为lightnas,努力找到所需的架构,通过一次性搜索来满足各种性能约束(即,\ \ suesperline {\ textIt {您只搜索一次}})) 。进行了广泛的实验,以显示LINDNA的优越性,而不是先前的最新方法。
translated by 谷歌翻译